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The curves of the thermal conductivity versus temperature of some insulating crystals (alkali halides) 
which are doped with certain impurity centers exhibit a distinct indentation. This suggests a relaxation 
time of some resonance nature, which is independent of the temperature for molecular impurity centers 
(KC1:KNC>2, measured by Pohl) and temperature-dependent for monatomic disturbances (KCl:NaCl, 
etc., measured by Walker and Pohl). In this paper a theory is given for the influence of inelastic scattering 
of phonons at localized modes outside the band and at quasilocalized modes inside. The calculated relaxation 
time for the third-order process (kX) + (kV) +± (s), describing phonons and localized quanta, respectively, 
has been tested on the experimental data in the preceding paper by Walker and Pohl; from the very good 
agreement one may conclude that the indentation effect is quantitatively due to this scattering process. 
The analysis is also done for the scattering of phonons by internal modes of molecular perturbations. The 
relaxation time for the second-order process (kX) <=* (a), (o-)=internal quantum, is independent of tem
perature and of resonance form as observed for KC1 :KN02. 

I. INTRODUCTION 

RECENT measurements by Pohl1 have shown that 
the thermal conductivity of KC1 crystals con

taining small concentrations of KNO2 exhibits a distinct 
(resonance) indentation in curves of temperature de
pendence, which changes with the NO2 concentration 
and is considerably different from the shape of the 
"pure" KC1 thermal conductivity. Figure 1 shows 
experimental results. 

Pohl suggested that a relaxation time r s of the form 

(la) 
(co0

2-co2)2+(A/7r)2co0V 

be assumed for the relevant scattering process, as 
would characterize some resonance. With this phe-
nomenological assumption it was possible to explain 
the structure of the curves in Fig. 1 by a suitable choice 
of the constants A and co0; A can be varied over a wide 
range A > 0 without altering the result noticeably. 
(Pohl found coo=2xX1012 sec - 1 most favorable for the 
system KC1:KN02 .) 

There are, however, other systems, e.g., KChNaCl , 
KC1: Cad2 , KC1:KI, etc., whose thermal conductivity, 
as measured by Walker and Pohl,2 show waviness 
similar to Fig. 1. Here, the shape of the curves can be 
described only by an additional relaxation time rs 

which is temperature-dependent, for instance, 

ATW 

(coo2-co2)2+(A/7r)2co0V 
(lb) 

Although the formulas (la) or (lb) did fit the re
spective measurements rather well, there was no 
specific theoretical model which would support these 
postulates. The aim of this calculation is to give an 
atomistic model of the resonance-scattering process and 
a theoretical calculation of the proper relaxation time. 

* Supported by the U. S. Office of Naval Research. 
1 R. O. Pohl, Phys. Rev. Letters 8, 481 (1962). 
2 C. T. Walker and R. O. Pohl, preceding paper, Phys. Rev. 

131, 1433 (1963). 

Until recently the existing calculations showed that 
any elastic-scattering process of phonons has a mono-
tonic-relaxation time (r^con , n negative or positive).3 

Excellent presentations of these calculations are given 
in the review articles by Klemens,4,6 Carruthers,6 and 
Bross7 and in a book by Peierls.8 A superposition of 
such monotonic-relaxation times, n, according to the 
law9 

( r t o t a O - ^ Z ^ ) - 1 (2) 

cannot give any waviness in the temperature depend
ence of the thermal conductivity. The indentation in 
the curves and resonance expressions of the form 
l(a),(b) must be ascribed, therefore, to nonelastic or 
resonant-scattering processes where energy may be 
scattered out of or into a particular part of the phonon 
spectrum. An example is the resonance interaction 
between phonons and the electron spin of paramagnetic 

3 In his important paper of 1951, P. G. Klemens (Ref. 15) noted 
that the thermal conductivity of elastic-phonon scattering proc
esses at imperfections may be decomposed into two parts, x = Xi 
+X11, both exhibiting a peak at possibly different temperatures, 
if one takes into account the interaction of different polarization 
branches [longitudinal (I) and transversal (II)] by means of 
Normal processes. This superposition might possibly give rise to 
an indentation in the over-all shape of the curves. 

However, Klemens has stated that in the case of regular crystals 
XI<^XII except for very low temperatures at about 2°K, so that 
an indentation at about 10°K seems to be unlikely (Pohl, Walker). 
Moreover, the decomposition X1+X11 can be done only by an 
approximation which is often very poor, especially for relaxation 
times, which vary strongly with frequency (mass differences, 
e.g.), as pointed out by Carruthers (footnote 39 of Ref. 6). A 
more accurate calculation of the Normal process is very compli
cated and has not yet been carried out. If one neglects Normal 
processes for all scattering processes which are connected with 
imperfections, our statement holds, that for elastic-scattering 
processes there are only monotonic-relaxation times. 

4 P. G. Klemens, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 14-1, p. 198. 

5 P. G. Klemens, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 1. 

6 P. Carruthers, Rev. Mod. Phys. 33, 92 (1961). 
7 H. Bross, Physica Status Solidi 2, 481 (1962). 
8 R. E. Peierls, Quantum Theory of Solids (Oxford University 

Press, New York, 1955). 
9 J. Callaway, Phys. Rev. 113, 1046 (1959). 
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FIG. 1. Thermal conductivity of KC1 doped with different con
centrations of KNO2 as an example of the influence of inelastic 
phonon scattering at localized modes. [Measurements by Pohl 
(Ref. 1).] 

ions, which has been observed recently10"-12 and analyzed 
theoretically by Orbach.13 

As seen by the experimental results,1,2 the indentation 
in the curves depends on the concentration of the 
impurity centers in the host lattice, thus demanding 
that the effect be due to these impurities. This means 
that in addition to the Rayleigh scattering of the 
phonons at the impurity center14-15 with T^CO~4 there 
must exist another scattering mechanism. One is led 
at once to suspect that we should consider the inelastic 
scattering of phonons at localized modes. 

These modes are unable to transport energy (heat) 
and can make no contribution to the heat current. 
Nevertheless, they influence the heat current because 
they may be excited by annihilating phonons (which 
reduces the heat current) or de-excited by creating 
phonons (which increases the heat current). We can 

10 E. D. Tucker, Phys. Rev. Letters 6, 183 (1961). 
11 D. I. Bolef and R. B. Gosser, Proc. Phys. Soc. (London) 79, 

442 (1962). 
1 2 1 . P. Morton and H. M. Rosenberg, Phys. Rev. Letters 8, 

200 (1962). 
13 R. Orbach, Proc. Roy. Soc. (London) A264, 458 (1961). 
14 P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955). 
15 P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951). 

expect that these scattering processes are responsible 
for the indentation in the curves of the thermal 
conductivity. 

II. LOCALIZED MODES 

To simplify the calculation as much as possible, we 
assume the insulating host crystal to have cubic struc
ture (which is the case for all crystals in which the 
aforementioned resonance effect has been found) and 
only one atomic mass (which is a fairly good approxi
mation for KC1: M " K = 39.1 a.u., Mci=35.5 a.u.). As our 
physical system we can take a cubic region of N3 

lattice points in the center of which is a point defect 
of mass, Ms. Then the Hamiltonian in harmonic ap
proximation is given by 

(3) 

where Mn = M for the regular atom and Mn=Ms for the 
disturbance in the center [i, j — 1, 2, 3 ; n = a(nh n% n%); 
w t - = 0 , l , 2 - - - ] . 

The Schrodinger equation is solved if we know the 
normal modes of the oscillating lattice. For the ideal 
crystal we can find them as standing or propagating 
plane waves by postulating (instead of the exact bound
ary conditions) the well-known periodicity condition. 

The solution for the defect lattice, however, is much 
more complicated. In fact, very little is known quanti
tatively about localized modes although a large amount 
of important work has been done within the last 
years.16-19 In principle, the problem is solved by the 
fundamental work of Lifshitz,16'20 on the one hand, and 
of Montroll and Potts17 on the other, but the explicit 
calculations which have been published21-22 are re
stricted to special simplified cases because of the im
mense mathematical difficulties. At this writing there 
are some new developments on scattering problems23,24 

which, though apparently different in approach, are 
compatible with our development here. 

Accordingly, we survey some general results16 for 
the normal modes of the defect lattice. Under certain 
conditions which we need not consider here one has the 
possibility of discrete-localized modes in the gap be
tween the acoustic and the optical band and above the 
optical band. These modes outside the bands are the 
" t rue" localized modes. 

Apart from these singular solutions the alterations 
within the acoustic band are most interesting. Accord-

1 6 1 . M. Lifshitz, Nuovo Cimento, 3, Suppl. Al, 716 (1956). 
17 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955); 

102, 72 (1956). 
18 A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. 

Weiss, Rev. Mod. Phys. 30, 175 (1958). 
19 J. A. Krumhansl, Suppl. J. Appl. Phys. 33, 307 (1962). 
2 0 1 . M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 18, 293 (1948). 
21 R. L. Bjork, Phys. Rev. 105, 456 (1957). 
22 H. B. Rosenstock and C. C. Klick, Phys. Rev. 119, 1198 

(1960). 
23 J. Krumhansl (to be published). 
24 M. V. Klein (to be published). 
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ing to Lifshitz16 the eigenvectors are no longer pure 
plane waves; they contain also a term which is approxi
mately radially symmetric to the imperfection center. 
However, these Lifshitz solutions can still be char
acterized by a wave vector k and a polarization X be
cause of the plane-wave part, and because of the fact 
that the new k values lie between the ideal k values in 
such a manner that the density in k space is conserved. 
Moreover, the spectral density is also unchanged [piAy 
one solution ca(k) lies between two neighboring solu
tions of the ideal lattice]. 

In most regions of the acoustic spectrum the plane-
wave part is predominant and we may still speak ap
proximately of phonons. There may, however, occur 
small regions within the band in which the localized 
part is much more important than the plane-wave 
part.25 Very recent calculations of Krumhansl23 on the 
one hand, and Klein24 on the other, have demonstrated 
this in great detail. They have shown that the scat
tering cross section of the phonons may have a reson
ance peak within the band. This means that the co
herent second-order process 

(kX)^(k'X') (4) 

is no longer a pure Rayleigh-type scattering and the 
relaxation time is modified by a resonance factor. 

However, the scattering process (4) apparently can
not explain the experimental results of Walker and 
Pohl on KC1:KI, etc., because the required relaxation 
time must depend on temperature [Eq. ( lb ) ] . I t is 
natural, therefore, to consider other mechanisms such 
as a third-order process, but we then have to explain 
why the second-order process (4) might be less 
important. 

The explanation is probably that in these systems 
the mass or strain defect strength is not sufficient to 
lead to a pronounced resonant scattering within the 
bands; whereas for F centers or U centers there would 
probably be pronounced resonant scattering of the 
elastic type. 

Let (rjk\,r)s) be the exact set of eigenvectors for the 
disturbed lattice (rjs represent the singular localized 
modes outside the bands). Then the heat current takes 
the form, 

Q = Z Nkx&cokxVkx • AkX, (5) 
kX 

where iVkx is the quantum number of the mode (kX), 
whereas vkx is the group velocity for the plane-wave 
solutions of the ideal lattice. Q does not depend on the 
singular localized modes outside the bands. The func
tion Akx gives the deviation from the ideal case which 
depends on the exact scattering solutions. In the un
disturbed lattice we have A k x = l and we are back to 
the well-known expression of Peierls.26 If there are 
impurity centers, Akx has a minimum value < 1 in the 

25 R. Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962). 
26 R. Peierls, Ann. Physik 3, 1955 (1929). 

same region in k space where there is a resonance in 
the scattering cross sections of phonons as calculated 
by Krumhansl23 and Klein.24 

This consideration demonstrates that a third-order 
process may produce a large effectively resonant in
fluence because two modes (k\)> (k'X'), lying in regions 
where A k x~ l , may combine to a mode (k"\fr) with 
A/b"X"<Cl, which reduces the heat current, and vice 
versa. 

From these preliminaries we are led to suggest a 
simple conceptual device which allows us to simplify 
the mathematical description and make contact with 
the standard formulation of a Boltzmann equation. 
We introduce the following approximation: 

(a) We define a region of Gs modes around the reso
nance frequency cos, for which we put Akx==0. 
Then these modes do not contribute to the heat 
current and may be considered as "quasilocal-
ized" modes because of this similarity to the 
true localized modes outside the bands, and their 
eigenvectors TJS have no longer a traveling part. 

(b) Outside the defined region we take the ideal 
phonon solutions >7kx(0) instead of the real modes 
and put Akx= 1. 

Thus, the heat current can be written in the old form 
of Peierls, but the Gs k values in the defined vicinity 
around cos have to be rejected from the summation, 

Q = E^kx^cokxVkx (5a) 
kX 

(COA;X^COS) . 

The advantage of this conception is that we are now 
back in the phonon picture in lieu of a description in 
terms of the exact eigenmodes; this is necessary to set 
up the Boltzmann equations, because it is difficult to 
formulate the diffusion otherwise than in terms of 
plane-wave packets. Yet, it is important to note that 
the theory will contain two adjustable parameters, Gs 

and cos, the calculation of which is a task for future 
investigations. 

According to our concept we adopt as the basic sys
tem the approximate eigenvectors, 

(W0))+W, (6) 
where (rjs) includes the true localized modes outside 
and the quasilocalized modes inside the bands. Expres
sion (6) is no longer an orthogonal set, but naturally it 
has to be still a complete system in the 3NZ space. 

The interesting third-order processes are 

( k X ) + ( k V ) * ± ( * ) , (7a) 

with the law of energy conservation, 

co(kX)+co(k/X/) = cos, (7b) 
and 

(kX)+(*)<=±(k'X'), (8a) 

co(k\)+a>s = a>(k'A'), (8b) 

which latter is only realistic if ws lies within the band. 
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III. THE HAMILTONIAN 

For the Hamiltonian (3) we introduce the substitution, 

Zn'^MnUW, K^=Mn-^Mm-imnm^. (9) 

The basic set (6) does not diagonalize the matrix hnm
ij' 

exactly. Projecting the Cartesian coordinates £n* onto 
the basis (6) we get an expression in the normal coordi
nates gk\, qSJ which are connected to the standard 
creation-annihilation formalism by the definition27 

qkX = (V2cokX)1/2(akX
t+a_kX); qs= (V2co s)

1 / 2(^++^- s) 
(10a) 

qk\ = i(fi^k\/2)1/2(ak^—a-kX); q8 = i(h/2o)8)
ll2(a8

1;—a-.a), 
(10b) 

where — s means that member of the set [j?s(ni)] which 
has the same eigenvalue as r]s(ni): cos

2 = co_s
2 or ^s* = >7_s; 

if there is no such member, i.e., if rj8(ni) is real, — s has 
to be replaced by s, assuring that in this case qs is real 
too. (This follows from the fact that the variables £„* 
are real.) With these substitutions the Hamiltonian (3) 
is transformed to 

ff = ffo+ffint(2), (11) 

where i/mt(2) is the nondiagonalized part and Ho is 
given by 

#o = i Y, #wkx(0kxt0kx+0kxakxt) 
kX 

+ J 2 fius{as^as+asaj). (12) 
s 

#int(2) includes (a) the Rayleigh scattering (k,\) *=* 
(k'X') at the imperfection which is already well known14,15 

and need not be considered here; (b) the scattering 
(kX) +± (s), which is not able to conserve energy ac
cording to our model; (c) the scattering among the 
quasilocalized modes (s) <=± (s'}, which might be of 
some secondary influence on the processes (7, 8), if 
these.latter differ strongly for two quasilocalized modes 
s and s\ but this is not to be expected in view of the 
fact, that the modes J have the same radial symmetry; 
and finally (d) double creation or annihilation of both 
a phonon and a localized quantum, which strongly 
violates the energy conservation. 

It is necessary, of course, to make sure, that Hint
{2) 

can be treated as a perturbation. This question has to 
be investigated for each special kind of impurity center 
in detail, but we will postpone this analysis for later 
study. 

If #mt (2 ) is much smaller than H0, our conception is 
justified, and Ho gives rise to the following commuta
tion relations27: 

[tfkA,ak'X'+] = <$xx'<$kk>; Cfl„a«'+] = 5„/ , (13) 

where all other commutations are zero. 
27 G. Leibfried, in Handbuch der Physik, edited by S. Fliigge 

(Springer Verlag, Berlin, 1955), Vol. 7, Chap. 1, pp. 196, and 
especially 290 ff. 

Up to this point we neglected those terms in the 
lattice energy which are of higher order than the second; 
of these the cubic terms are most important and will 
be the basis of our analysis. They include the scattering 
processes (7) and (8). 

The cubic terms in the defect lattice can be written 
in the form 

1 
#int(3) = - Em P(n,m,m')ff**(m,m') 

3 ! nmm' 
Xfn*fn+myfn+m'*. ( 14 ) 

H^k(jxi}m!) are the coefficients of the ideal lattice4; they 
depend only on the two vectors m and m' defining a 
triangular region somewhere in the crystal, but they do 
not depend on the absolute position within the lattice 
space, marked by the lattice vector, n. The factors 
P(n,m,m') give the deviation from the idealistic be
havior and destroy the translation invariance; they 
turn to unity if the region (n,m,m') is far away from 
the center of disturbance. 

Carrying out successively the projection onto the 
basic set (6) and the transformation (10a, b) and quan
tizing according to (13) we arrive at an expression of 
the form 

# i n t ( 3 ) = E P k X k ' X ' S [ a k X + ^ k ' X ' t ^ S + a k X a k / X ^ s
+ ] 

kk'XX's 

+ L P k X ^ ^ T ^ k X ^ ^ k ' X ' + ^kX^^k'X'1"] 
kk'XX's 

+ • • • , (15) 

where we have written down only the parts which be
long to the processes (7) and (8). Hint

(s) includes also 
the well-known normal and umklapp processes and 
some processes which are of no importance. The cor
relation factors pkxk'X's and pkxs

k/x ' depend on the sym
metry of the crystal and the symmetry of the localized 
modes. 

The symmetry of the lattice already assumed to be 
cubic, we may specify the localized eigenvectors to be 
of a spherically symmetric form: 

rjs(r) = grad<ps (r) 
= <£s(r) (cos# cos<p, cos# sin<p, sin#). (16) 

These are perhaps not the only localized modes, but 
they are certainly the most important (and the ones 
which are localized most strongly). There is no difficulty 
in extending the concept to modes with a more com
plicated point symmetry (e.g., p, Asymmetry, etc.), 
but to simplify the calculation we will consider only 
those of the form (16). 

With these two presuppositions on the symmetry it 
is evident that the functions pkxk'X's can only depend 
on the absolute amounts | k | and | kr | and on the angle 
& between the two wave vectors k and k ' : 

P k X k ' X ' s ^ p x x ' s ( | k l , | k ' | ; # ) (17) 
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and, as the process (7) is symmetric in both involved 
phonons (kX) and (k'X'), we must have 

pxx ' ' (M' ;*) = Pxv4l(* ,,*;tf), (18) 

which means an extremal value for k = k'. The coeffi
cients pk\s

k 'x ' are identical with pkXk'X'8 as will be 
proved later on. 

The general properties (17) and (18) are insufficient, 
however, for getting the final result in a form where it 
is comparable to the measurements. To calculate the 
interaction factors of Eq. (15) in explicit form one has 
to analyze the deviation factors P(n,m,m') . Very little 
is known about them, and they depend sensibly on the 
special impurity center. Their exact form is too compli
cated for further computational use. 

Fortunately we can avoid the difficulty by a very 
plausible approximative assumption. We know that the 
ideal coefficients # i ? k (m,m' ) are significant only for 
small values of | m | and | m' |, thus ensuring that the 
region (n,m,m') remains small; we may, therefore, 
mark it by a vector R(n,m,m /) which is some average 
of n, n + m , n + m ' and replace P(n,m,m') by a func
tion of R, which has, of course, to be spherically sym
metric with respect to the origin, 

P(n,m,m') = P ( | R | ) , R = i ( 3 n + m + m ' ) . (19) 

This approximation implies that P(R) is practically 
constant within the region (n,m,m'), the extension of 
which is determined by the nonvanishing coefficients 
#^ ' k (m,m' ) ; hence, 

P(R)~P( | n | ) ~ P ( | n + m | ) ~ P ( | n + m ' | ) . (20) 

Using this simplification and the well-known relation 
for the ideal eigenvectors rjk\(ij), 

rikX(n+m,j) = rik}<(mj)eik-a. (21) 

The third-order interaction energy (14) is written in 
normal coordinates as 

1 
#int ( 3 ) =— 2 qk\qk'\>qs 

3 ! kk'XX's 

ijk n m m ' 

X{^kx(my)?7k'X'(m^)+)7kx(—mj>?k'X'(m—m'k) 

+77kx(m—m'7')??k'X'(—m'&)}+terms not be

longing to the processes (7) and (8), (22) 

thus making the summations over n independent of 
m,m / . 

IV. LATTICE SUMMATIONS 

Considering Eq. (22) we have to manipulate first 
summations of the form, 

T,P(\n\)rjs(n,j)e^^-\ (23) 

where the localized eigenvectors rjs(n,j) are of the 
spherically symmetric form (16). 

Without any further special statement on the func
tion <p8(r) (Eq. (16)) it is now possible to simplify the 
summation over n greatly. First we replace the sum
mation by an integration: 

E • • • = — / • • -r2 $m&drd&d<p. (24) 
n TQJ 

(TO= volume of the unit cell of the lattice.) Then we 
may carry out the integration over <p and $, if we use 
for the latter the formula28 

/ sin2?? cos( | k + k' | r cos#)d# 

^ / x a k + k ' I r V l k + k ' I r . (25) 
We get 

(k+kO-
ZP(\n\)Vs(nj)e^^'^Rs(\k+k'\)-~--, (26) 
n | k + k ' | 
where R8(z) is given by 

2TT2 1 r00 

R.(z) = / frfrP(f)*.(r)/i(2f). (27) 
TO ZJ o 

The formula (26) is the analog to the law of quasi-
momentum conservation in the theory of normal and 
umklapp processes5-6 (En^k+k '+k") -

For the evaluation of (27) we need the explicit struc
ture of the functions P(r) and $«(r) which requires a 
detailed investigation of the changes in the lattice 
produced by the special kind of impurity center. This 
detail would extend the inquiry unduly and obscure 
the essential features; therefore, we postpone the ques
tion for future study. To get some (in fact, quite good) 
estimate we put 

P(r) = l , (28) 

which means that the third-order correlations are not 
at all affected by the disturbance. Even in this case 
there are processes of the form (7) and (8) suggesting 
that the alterations of third-order coupling constants 
are not so very important for these processes because 
of the fact that the existence of localized modes is 
caused by the alterations in the harmonic terms. For 
the function cps(r) [Eq. (16)] we choose a behavior 
which is suggested by the characteristic radial vibra
tions of a homogeneous sphere in the theory of elas
ticity,29 modified, however, by a decreasing exponential 
factor, paying regard to the disturbance in the central 
region and establishing with this independence of 
boundary conditions, 

sinfir d 
<ps(r) = a(a,p) <r«'; * . = - p . ( r ) , (29) 

fir dr 
2 8 1 . M. Ryshik and I. S. Gradstein, Tafeln (VEB Deutscher 

Verlag der Wissenschaften, Berlin, 1957), p. 195. Ji(z) is the 
Bessel function of the first kind. 

29 L. D. Landau and E. M. Lifshitz, Elasticity (Pergamon Press, 
Inc., London, 1958), p. 102. 
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where the constant a(afi) is defined by the normaliza
tion condition for rjs(m) as 

aro 
a*(ogS) = — . (30) 

With the choice (28) and (29) we can perform the 
integration (27), 

tf.(|k+k'|)= — [(r i+r 2 ) 2 -4 /3 2 ] - 1 / 2 , (31) 
rorir2 

where the formula33 

/ e~ar sinprJo(| k + k' |r)dr 
Jo 

2al3 
= — C ( r ! + r 2 ) 2 - 4 ^ ] - i / 2 (32) 

r±r2 

has been used, and rly r2 have the meaning, 

n*=a>+(p+\k+k'\)*, n>0 
r2

2=a*+(13-\k+k'\¥, r2>0. 

When (26) is substituted into (22) we are left with the 
summation problem, 

ijk 

X E 6* ( k , m + k /-m / )# i y^m,m /) , (34) 
mm' 

and two other summations E ( 6 ) and E ( c ) j but it can 
be proved after some elementary transformations that 
both are identical with E ( a ) - The ek\ ; are the unit 
amplitudes of the modes (kX), keeping in mind the 
definition of the eigenvectors rjk\, 

W r i H G - ^ W e x p ^ k - r ) , (G=N*). (35) 

In particular, X= 1 indicates the longitudinal wave, i.e., 

e k i ' = * y / | k | . (36) 

Moreover, we have used in (34) the abbreviation, 

k"=-(k+k'). (37) 

The summation (34) appears also in the case of the 
ideal lattice. An accurate computation yields extremely 
complicated expressions.27 To approximation, (34) can 
be expressed in terms of the elastic constants of the 
crystal; we refer to the book by Ziman.31 The simplest 
possibility is to express (34) by one single constant 7, 

30 H. Bateman, Tables of Integrable Transforms (McGraw-Hill 
Book Company, Inc., New York, 1954), Vol. II, p. 10. 

31 F. M. Ziman, Electrons and Phonons (Clarendon Press, Ox
ford, 1960), p. 131. 

the so-called Griineisen32 constant. Klemens4'5 gives the 
formula, 

M 
£(«> = + ; ( 3 I ) i / a _ 7 w w ' « " S k + * + k " , (38) 

Gv 

(z>=sound velocity) whereas in the result of Leibfried 
and Schloemann33 the numerical factor (3!)1/2 is re
placed by 1.23. A typical value for 7 is 2 (e.g.,7Kci= 1.6). 

We use the approximation (38), which is also well 
accepted in the theory of normal and umklapp proc
esses,, although it is rather bad. More accurate but 
more complicated expressions would burden the further 
calculation too much. 

With (38) and the two approximate assumptions, 

o> (kX) = v\ I k I, ("acoustic approximation") (39a) 
and 

v\ = v\> = v, (39b) 

which are both usually in the theory of heat current5 '6 

and already included in (38), the scattering Hamil-
tonian for three quantum processes finally takes the 
form 

i Mv2 

tfint^-^!)1'2 7 E # . ( | k+k ' | ) -
2 G kk'XX's 

Xlk+k'llkllk'lffkxgk^., +• • - , (40) 

which may be written in the creation-annihilation form 
(15) by means of the transformation (10a). Doing so, 
we find the concrete expressions for the interaction 
factors pkXk'X'8, Pkxs

k'x', namely, 

PkXk'v8=pkxs
k'x, = i2-5 /2(3!)1 /2G-HM^ s)-1^^27 

X i J . ( | k + k / | ) | k + k , | | k | 1 / 2 | k , | 1 / 2 . ' (41) 

Expressions which are very similar to these were de
rived by Klemens34 when he calculated the anharmonic 
attenuation of a singular localized mode outside the 
bands; yet they are not identical, because he used 
another form than (29) for the localized mode. 

The coefficients (41) evidently satisfy the relations 
(17) and (18) and are independent of X, X'. From now 
on we suppress the indices X, X' at all quantities which 
do not depend on them, especially 

« (k \ )=w(k ) ==«(£),.. (39c) 

which follows from (39a, b). 

V. MOLECULAR VIBRATIONS 

So far the mathematical description has been re
stricted to the case where the impurity center is mon-

32 E. Griineisen, in Handbuch der Physik, edited by H. Geiger 
and Karl Scheel (Julius Springer, Berlin, 1926), Vol. 10. p. 1. 

33 G. Leibfried and E. Schloemann, Nachr. Akad. Wiss. Gott-
ingen Math. Physik. Kl. Ha 4, 71 (1954). 

34 P. G. Klemens, Phys. Rev. 122, 443 (1961). 
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atomic, i.e., a regular ion of the lattice is replaced by a 
foreign one. The treatment of polyatomic or molecular 
impurity centers, where more than one irregular atom 
occupy a single unit cell of our (monatomic) lattice, is 
simpler in some senses. 

Let us assume that there are v foreign masses in the 
unit cell (0,0,0), or 3 (v— 1) new degrees of freedom; and 
let us, further on, alter the meaning of the lattice 
vector n : 

n=a,(ni,n2,nz) for ni2+ti22+nz2?*0, ^ = 0 , 1, 2, • • • 

= n0
(1), n0

(2), • • •, no00 for ni2+n2
2+nz2 = 0. (42) 

Then we have again to look for the eigensolutions of 
the matrix hnm

ij which is now of a higher rank. There 
are once more the "lattice modes" discussed in Sec. II , 
in which the molecule acts (roughly speaking) as a 
unity with mass Mo; for them the spectral density is 
unchanged. But in addition one has 3(v— 1) new modes 
either outside the bands or inside. In the case of the 
system KCLKNO2, for instance, the internal vibra
tions of the free N02~ atom are practically unchanged 
in the lattice and lie high above the lattice modes, 
whereas the rotational vibrations of the NO2"" center 
lie in the acoustic band. 

We are only interested in the new modes within the 
acoustic band. They may well lie in spectral regions, 
where the "lattice modes" are phonons, i.e., where the 
heat current is given by the Peierl's formula. Then we 
have the possibility of the second-order process, 

(kX)^(cr ) (43) 

with a strong influence on the thermal conductivity. 
To describe this process we use the basic system35 

(W 0 ) )+M, (44) 
which includes all the 3NZ ideal eigenvectors ^k\(0) 

together with 3(v—l) localized vectors rjff which repre
sent the molecular vibrations. They are solutions of the 
eigenvalue equation 

£ ^nm(^)4V(mi) = co2((r))7(r(m), (45) 
m ; 

where hnm
(<r)i3 is identical with hnm

i3' in the neighborhood 
of the origin (i.e., for small | n | , | m | ) and zero for 
larger values of | n |, | m | in order to assure that f\a is 
strongly localized. The interaction Hamiltonian then 
takes the form 

#int(2) = i E *(o) (kX)«(( r ) ) 1 / /—+l) 
kXer VOkX / 

X [fikx* W a < r + a k X W a k x ] H , (46) 

where we have suppressed those terms which belong to 
double creations or annihilations and those of the 

35 The eigenamplitudes ??kx for the points n0
(1), n0

(2), • • • are all 
the same and identical with ^kx(0^') in the 3iV3-dimensional 
description, *7kx(n0

(1)*) =»?kx(no(2)i) = • • * ==^kx(0,i). 

processes (kX) +± (k'X') and (a) +± (a'). Moreover, some 
additional contributions to the process (43) are negli
gible according to the relations, 

\(k\\h^\a)\y>\(k\\h-h^\a)\, ( 4 7 a ) 

I (a I *<°> I kX) I » I (cr I h-h^ I kX) I, (47b) 

and not written down in (46). Okx* is the scalar product 
of the two vectors i?kx(0) and rj^. 

The rank of the matrix hnm
(cr)ij is a small number, 

although larger than 3(^—1), and there are, therefore, 
no practical difficulties for the evaluation of w2(<r) and 
rjc(ni). For the set (44) we choose the most localized 
solutions. I t is not necessary that the solutions remain 
localized if we go to the limit im ( f f ) i ?=^nm i f . Hence, the 
molecular vibrations, represented by the most localized 
solutions of (45), are possibly not stationary eigen-
vibrations of the lattice at all, but they are quasi-
stationary vibrations with a long decay time. 

VI. THE SCATTERING PROCESS 

The scattering Hamiltonians for two and three 
quantum processes being established, we may turn to 
the formulation of the scattering process. We have to 
look for the alterations in time for the occupation 
numbers Nk\,Ns,2Lnd Na which are due to the respective 
scattering process. Starting with an initial state \[/i each 
of the scattering processes (7), (8), and (43) defines in 
a natural way two final states ^/ ( 1 ) a n d ^ / 2 ) (occupation 
numbers either unchanged or changed by ± 1 ) . The 
time derivatives iVkx, etc., are then the difference of 
gain and loss per unit time, where gain and loss are 
given by the transition probability to one of the two 
final states, respectively, the transition probability 
being determined by the interaction Hamiltonians. 

All this is standard procedure4,5 and need not be 
reproduced here in detail. For the second-order process 
(43), however, there arises a strong implication be
cause of the quasi d behavior of the transition proba
bility Wi/(t) as given by elementary quantum me
chanics.36 Namely, it is customary to go the limit 
/ —* 00 and use the formula37 

lim s i n W / W = 8 (a) (48) 
t—>00 

which, of course, is physically of no sense, taken literally, 
because it would imply that the change of any state, 
caused by the perturbation, would be vanishingly small 
for infinite times. Nevertheless, one can use (48) in all 
cases where the limiting process does not influence the 
result essentially, i.e., if there is a summation over a 
dense spectrum. Yet in the second-order process (43) 
the expression for iVkx contains a summation over a 
small number of discrete (molecular) frequencies ov 
only. 

36 E.g., L. I. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1955), p. 197 ff. 

37 L. D. Landau and E. M. Lifshitz, Quantum Mechanics 
(Pergamon Press, Inc., London, 1958), p, 146, 
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I t is, therefore, necessary to take account somehow 
of the finite decay time of internal vibrational excita
tions of molecular defects, which are of a quasista-
tionary character. This is done in elementary quantum 
mechanics38 by replacing the discrete energy by an 
energy distribution in the vicinity of the discrete value. 
In our case we write the law in the form, 

w{fio))d{h(X)) — 
r, d(foof) 

T (feo-feo„)H-iV 
(49) 

where A(fio)<r=Tff is the so-called breadth of the dis
tribution around the central value foo„. and is given as 
some average over the breadths of the quasistationary 
states (Ncr+tyfitOffyNJiGOa, (Na— l)^av, namely 

T.= 2T(N,). 

T(N„) is related to the average lifetime r(A7
(r) of the 

state Njuti, by r(Nir)=fi/2T(N<r). This lifetime r(Nff) 
is defined by the scattering process (43) itself, if we put 
Nk\ = 0 in the formula for Nff, 

d Na(t) 
-Nff(t) = - — — , 
dt T(N.) 

(tfkx=0). (51) 

We multiply now the expression for iVkx with w(fua) 
Xd(nco), as given by (49), and integrate over fico. Then 
the limiting process H co no longer critically in
fluences the result, whence we may use it. Let us, 
further on, replace summations over k by integrations 
in k space (V=volume of the system), 

£*•••=-
V 

(2x): 
: / • 

V 1 

(2TT)3 v* 

•co2 sm&do)d&d<p, (52) 

and summarize the results in explicit form. For the 
second-order scattering (43) we get 

d 

dt 
-#k X(0 = 2 £ |Qkx'| 

I W ( * ) 

d V co/ 

- # , » = — — E 
dt (2TT)2 V* x 

(co(*)-co,)M-(r,/ft)2 

X[iV.- iVkx] , (53a) 

|akX*(co(£Hco„)|2 

where, by means of 

h v . 
=h 

(2TT)2 

XlNi 

(50) and 

vz x J 

t\—Nj] sm&d&d<p, 

(51), 

O k x ' M * ) ^ , ) ! 2 

y.sind-ddd<p 

(53b) 

(54) 
38 E.g., D. I. Blochinzew, Grundl. d. Quantenmechanik (VEB 

Deutscher Verlag der Wissenschaften, Berlin, 1953), p. 360. 

which demonstrates that I \ in fact does not depend on 
N„\ this is plausible as no third-order effects were in
cluded. For the third-order processes (7) and (8) there 
are no implications concerning the limit t—> GO, and 
for the scattering (7) we have 

dt 

V 

(2T)-

co'2 r 
— E / 
ffivZ X's J 

p*(w,co' ;# ') |2sintW<V 

XlN.(Nn+l)(Nvv+l)-(N.+ l)N*rffk.v], 
(55a) 

(50) dt 
•N.(t) 

X) / uPdu sinddddp 

X | ps («,«';#') |2 wa»'d»'d^ (55b) 

X[( iV.+ l )^ k X iV k 'v - iV.( iV kx+l)( iVk'X'+l)] , 

where 
(56) 

This condition follows from the integration over the 5 
function and is nothing but the law of energy conserva
tion already written down in (7b). The two-phonon 
frequencies must be in the acoustic band (co, co;<co^ 
= acoustic boundary; we may put co 0 = COD = Debye fre
quency). Whence, (55) is correct only if we make the 
restrictions 

tO6 — co0<co<co0 for cos>tO0 (57a) 

and 
0<co<cos for cos

:=o)s
B<cog. (57b) 

Otherwise the right-hand sides of (55a, b) are zero. 
Not included in the result (55a, b) are double crea

tions or annihilations of the mode (kX), which occur in 
the special case kX=k'X'. But as the additional con
tributions from this process to Nk\,Ns contain one 
summation over the k space less than (55a, b), we may 
neglect them. 

In the same way we may establish the equations for 
the scattering process (8), but it turns out that this 
process is of no physical significance because its re
laxation time has a monotonic functional behavior. This 
is quite plausible as (8) is not symmetric in both in
volved phonons. Moreover, (8b) yields co'>cos which 
shows that (8) becomes effective at higher temperatures 
than (7), where both co and co' are below cos. 

VII. THE BOLTZMANN EQUATIONS 

The further mathematical description conforms to 
the other work done on thermal conductivity and is 
indicated in the fundamental work by Peierls.26 We 
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may, therefore, be very brief and refer to the review 
articles by Klemens4,5 and Carrutriers.6 

We look at the phonons as particles moving with the 
group velocity 

vk=gradkco(£) = flk/|k| . (58) 

Their density distribution iVk\(r,/), given as a function 
of space and time, depends in our case on both the 
scattering and the diffusion process. In the steady state 
the total rate of change of the distribution function per 
time must vanish 

A^kx]scatt+iV'kx]diff = 0 . (59) 

These are the Boltzmann equations in our special case. 
But they are incomplete yet. The localized quanta are 
not able to transport energy in one direction and 
cannot be taken as particles. Their total rate of change 
in time is given by the scattering with phonons, and in 
the steady state we have, therefore, 

# a ] s c a t t = 0 , o r iVV]Scat t= 0 , (60a, b) 

respectively, which is to be considered as a subsidiary 
condition to the Boltzmann equations (59). 

A7'kx,Ar
s,iV"(r]Scatt are given by the appropriate expres

sions of the last section, whereas iVkx]diff is usually 
taken in the convenient but also rather accurate 
approximation, 

#kx]diff= - (vk- v r )C p h («) /*«, (61) 

where Cph(co) is the contribution of the mode (kX) to 
the specific heat, 

Cph(co) = 
(ho>)2 eMhT 

kT2 (e ha>!kT_ l)2 
(62) 

The essential quantity for describing the heat current 
is the deviation of the quantum numbers iVk-x, iVfc, Nff 

from thermal equilibrium 

#k(o) = [ exp(*«/Ar)-1]" 1 , etc. , (63) 

and we write 
Â kx = ^ k

( 0 ) +wx(k) , etc. (64) 

We adopt also the principle of detailed balance™ which 
reads for the second-order process (43), 

A^(0) = Na ( 0 ); (65a) 

and for the third-order process (7), 

AV 0 ) (AV 0 ) +1) (A^ ( 0 ) +1) 
= (A^°>+l)Afk (0Wk ' (0 ) , (65b) 

and is, in both cases, a consequence of the law of energy 
conservation. 

Using the foregoing expressions, the Boltzmann equa
tions (59) with the appropriate subsidiary conditions 
(60) can now be established in explicit form. Inserting 

39 Cf. for example, Ref. 31, p. 264 ff. 

(53a) and (61) into Eq. (59) and (53b) into Eq. (60b) 
we have for the second-order process (43), 

Cph(w) co2F, 

(vk-vr)- =2£ iswl2-hoo (co-co,)2+OV/z)2 

X [ » , - » x ( k ) ] (66) 

with the subsidiary conditions, 

/ 
£ / |i2kx

flr(w = w < r ) | 2 [ »x ( k ) -» < r ] s i n ^^^=0 , 

(co = coff). (67) 

The corresponding equations for the third-order process 
(7) are found, if one inserts (55a), (61) into (59) and 
(55b) into (60a), 

Cph(0)) 
(Vk-VD 

flu 

V a/2 r 
= E / lp 8 (co,a/ ;^) | 2sin#W<V 

(2TT)2 fiV v . J 

XLns(Nkw+Nk^)~nx(k)(Nk,^-N^) 

-wx'(k /)(A^k (0)-A^s(°))+high. terms] (68) 

with the subsidiary conditions, 

£ / oo2du sin&dMy \ ps(w,co'; # ' ) |2 sin#'<W'<V 
XX' J 

X [ ^ ( k , ) ( ^ k ( 0 ) - A ^ w ) - ^ A ^ k ( 0 ) + h i g h . t e r m s ] = 0 , 

(69) 

where a/ is given by (56). 
The Eqs. (68), (69) are nonlinear integral equations. 

I t is customary39 (but also necessary) to linearize such 
equations in transport theory, which we do by neglect
ing the terms of higher order in n8} w\(k), assuming the 
deviations from thermal equilibrium to be small. The 
equations for the second-order process, on the other 
hand, are exactly linear, as the second-order terms 
nan\(k) cancel. 

The quantity ftkx0" is the scalar product of the two 
basic vectors rjkx and 77̂ ; it takes the form, 

OkX'=(i?kxh<r) = Ei?kx*(0,i) E i?,(n0<">*) 
* no(ju) 

+ E ijkx*(n*>j.(n»), (70) 
n i 

(n ?*no<M>) 

where the first term on the right-hand side is inde
pendent of k according (35). Looking at l^kx^i2 as a 
function in k space, this function is radially symmetric 
to the origin if the amplitudes i)a{m) outside the mole
cule (n^no ( / i ) , M = 1> 2, • • • v) are radially symmetric in 
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n space; this is not exactly true for the single molecular 
impurity. But it is true in a statistical sense, i.e., if we 
average over a large number of impurities, and we put, 
therefore, 

\tt^\2=\^(o>)\2. (71) 

Doing so, it is evident that the ansatz 

»„=0, »x(k) = »x(w)(v k-vr) (72) 

is compatible with the subsidiary conditions (67), and 
from (66) we have 

»x(co)=-
Cph(co) 

2ho) fc E I ^ («) |2-
o>2r„ 

(«-«,)*+(T,/ft)« J 
(73) 

as solution of the Boltzmann equations for the second-
order process. 

For the third-order process it is clear by considera
tion of (68) and (69) that ti\(k) cannot depend on the 
polarization X of the phonons; replacing summations 
over X by the factor 3 we can drop this index. Apart 
from that we try an ansatz similar to (72), 

ns = 0, n(k) = n(co)(yk'VT), (74) 

which satisfies the subsidiary conditions (69), and after 
some elementary transformations the system (68) is 
reduced to the simple form, 

Cph(w) 
= - Z #i'(«)co'2[A r^(o> ,)-iV r. (0)Xw) 

s 

- E MwVCA"" («)-#.<0>>(«0; 

(«'=«.-«), (75) 

|ps(co,co';#)|2sin#<£??, (76a) 

the abbreviations, 

M«)= 

p2S(0>) = 

3V f 

2whhy0 

SV r 

2irh2v*. 
|ps(a>,co';#)|2sinW#. (76b) 

This system of linear equations for the set n(co>) is 
easily solved; we have only to write down the parallel 
equation with 00, a/ interchanged obtaining then two 
equations with the two unknown quantities n(co) and 
n(oo') = n(cos—00). 

We prefer, however, a somewhat simpler procedure 
to get the relaxation times, which consists in the separa
tion of the Boltzmann equation (75) into two parts. 

VIII. THE RELAXATION TIME 

If we write down the general Boltzmann equation in 
abstract form, 

where X(k) and n{k) are defined by (61) and (64), 
respectively, [X(k)= — N(k)sc&tt] and Ph P2, ••• are 
integral operators transforming the set n(k), then it 
can be shown39 that the total relaxation time is given 
by the superposition (2). n is the relaxation time of one 
single scattering type, following from the equation, 

(78) 

(79) 
namely, 

W-^-ifflMW, 
if rii(k) is the solution of (78). The relation (2) is exactly 
true, if all the Eqs. (78) have the same solution, apart 
from some constant multiplier. Otherwise, (2) is only 
a good approximation. I t is closely connected with the 
Matthiessen rule (Matthiessen, 1862) but more ac
curate as this. 

A. The Second-Order Process (5) 

Inserting (73) and (61) into (79) we have for the 
relaxation time, 

( r x ( c o ) ) - 1 = + 2 E I ^ ( c o ) | 2 - " * (80) 
( u - t o , ) 2 + ( i y # ) 2 

which is of a resonance structure. But to be comparable 
to the experimental results one has to know the func
tional behavior of |l2\cr(aj) |2, which is only possible if 
one analyzes the molecular vibrations in the special 
case. We postpone this question for future study. 

B. The Third-Order Process (7) 

By defining 

s 

(co/ = cos—co), (81a) 

? , a ? , ( y O = - E M«V*Pv<0)(»)-tf.<0)]«.'.»", 

(81b) 
we may divide (75) into two equations of the form (78) 
which yield, according to (79), the two relaxation 
times, 

(r1(co)7;))-i= -JP1(co,a>) = E Pis(o>)fxs^,T) (82a) 

X(u>) 
(r2(co,7:))-i= - p , ( w > ) _ _ = £ ^ . ( „ ' ) / 2 ' ( « , r ) , 

X(co') * 

where 

/,•(w, T) = a/2[7V<0> («') - #.<•»] 
ehu'lkT(eimlkT ]\ 

(82b) 

(77) 

Cph(co) 
/2*(co,r) = ww' [^ (0 )(coO-iV s

(0 )] (83b) 
Cph(coO 

^3 eh^lkT^'lhT__X) 

w ' (eft«,/*r_i)(e*«/*r_i) 
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FIG. 2. The functional behavior of 
the functions fi(co,T), f2(co,T), given 
by Eq. (105a). They represent, apart 
from the less important factors pis(co), 
p2

s (to), the two relaxation times of the 
three quantum process (k\)+(k'A')?=± 
(s). A , r = 7 y i 0 ; B, T = Ta/5; C, 
T=TS;D, T-+ oo. (kTs = hcos). 
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The functions /i8(co,r), f2
s(o)JT) which determine the 

temperature dependence of the relaxation times are 
shown in Fig. 2. I t is seen that / i s has always a maxi
mum; it goes to oomax = ioos at high temperatures. The 
function /2

S, on the other hand, has a (small) maximum 
only at low temperatures, whereas it exhibits a mono-
tonic increase at higher temperatures. 

Next we consider the temperature-independent fac
tors in (82a, b). According to (76a, b) and using (41), 
(31), and (30) we can write them in the form, 

p1
s(a>) = QsI1

s(a>), p2s(a)) = QsI2
s(u). (84a, b) 

The constant Qs has the value4) 

Q*=h2nsyL. 
Musv 

(85) 

where /JLS is the concentration of defects (i.e., the number 
of impurity centers per volume). 

The two integrals 

71-(o))=|k| |k ' | 

/2*(co)Hk||k'| 

|k+k' |2siiufcW 

o r 1V 2
2[(r 1+r 2) 2-4/3 2] ' 

| k + k ' | 2 s i n W t f 

(86a) 

(86b) 

give the frequency dependence. With the substitution, 

^ 2 = | k | 2 + | k / | 2 + 2 | k | | k , | costf, (co'-co.-co) (87) 

40 V is the volume which contains one single-impurity center. 
G the number of unit cells in it, or V = GTQ, which is used in (85), 
It follows that (1/V) is just the concentration jus of impurity 
centers/unit volume. 

they are transformed to 

/ i s ( " ) = 
qzdq 

/2
s(co) 

W») qi sind(q,co)dq 

I J\k-k'\ ri2rj [(n+r2)2-4£2] 

(88a, b) 

The two integrands are drawn in Fig. 3. I t is easily 
seen that both integrals are symmetrical about the 
point co=§cos, have the value zero at w = 0 and a> 
= o)8(\k—k'\ = \2co—cos\/v-^us/v) and that always 

/i*(<o)>JV(w) or pis(a>)>p2s(a>). (89) 

i~is(co) has a maximum at o> = Jcos for the simple reason, 

60/?"% 

30/?"' 

1 ' rt(q).%(q) 

h 

* y / 

L^^V 0 asp 

V^ 
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i • r i 
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FIG. 3. The integrands yi(q), y2(q) of (110a) and (110b), re

spectively, for the special case a—(3/10, cos = z>/3. 72(2) depends on 
co; A , co = 0.8ws; 5 , co = 0.6cos. 
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that the integration interval is maximal and the inte
grand does not depend on co. /2 s (co), on the other hand, 
can have a slight minimum at |cos. 

To illustrate the properties somewhat more in detail 
we make the approximation, 

rl
2r2

2l(r1+r2)
2-^22 

= 4/32a2(/32-^2+4^) for f32-q2>0, (90a) 

= 4(£2-/32)3+16a3/53 for p2-q2<0, (90b) 

which follows from (33) by assuming /iC£>a; this is 
physically quite reasonable. Remembering now that 
(ps(r) pEq. (29)] was chosen as a characteristic radial 
vibration of a homogeneous elastic sphere modified by 
an exponential decreasing factor we may as well take 
over another relation from elasticity; namely, in the 
problem of the vibrating sphere the constant ft is con
nected with the frequency o*s by29 

] = ws/v. (91) 

This means that the upper limit of the integrals (88a, b) 
is just p, and, using (90a) they are easily evaluated: 

/i*(co) = 
l r 

8a2/? K) 
/ 2 s ( « ) = -

8a202 

-4&&'+/32i 

02+4a/3 

4a \ kk'+afr 
In 

0/ a/3 . 
(92a) 

-kk'-
W 

x\kk'+2a$U-(l+—\ )1J. (92b) 

The result is shown in Fig. 4. 
Looking at the functional behavior of both /2

s(co,r) 
and 12s (00) it is evident that the relaxation time 72(0?,T) 
has a much smaller resonance structure than n(o),T); 
it does not make any considerable contribution to the 
physical effect we are interested in, and we are allowed 

to neglect it. Then we are left with the expression (82a). 
Further on we consider the fact that the quasi-

localized modes inside the acoustic band lie in the 
vicinity of a mean frequency, and there is no harm in 
replacing cos by this frequency; whence, we may sub
stitute the summation over s by Gs, where Gs is the 
number of quasilocalized modes inside the band, or 
Gs — 1 for the true localized mode outside the regular 
spectrum. Thus, we are left with the final result 

where 

(Tkk*(a>,T))-i=Ef(a>,T)g(u), 

fiToa 
E = ^Tr2fisy

2 Gs, 
Musv 

(93) 

(94) 

*(«) = ( 1 + 4 - ) In - ( 1 ) + - / -
\ o)s/ lLcos \ cos/ cosJ' o)s\ 

- 4 - 1 ) , (««=«»), (95) 

and f((a,T) is given by the expression (83a). This result 
was used by Walker and Pohl for discussing the ex
perimental data. 

IX. SUMMARY AND DISCUSSION 

We can summarize the results of the present in
vestigation as follows: 

(1) Interpretation of the measured thermal con
ductivity in KC1 crystals containing atomic or molecular 
impurities definitely requires an additional relaxation 
time of nonmonotonic (resonance) character. I t is 
likely that this is due in many cases to the inelastic 
scattering of phonons interacting harmonically or an-
harmonically with localized modes. The latter make no 
contribution to the heat current. 

(2) The second-order process (kX) +± (a) can only 
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occur in the case of polyatomic impurity centers, where 
there is a molecular frequency (internal mode) within 
the phonon spectrum. The relaxation time for this 
scattering process does not depend on temperature and 
has a resonance behavior, in accord with the experi
mental results of Pohl.1 I t has a factor which is given 
by the scalar product of the eigenvectors of the lattice 
modes (phonons) and the molecular modes and cannot 
be determined without investigating the latter in detail; 
this is a task for future study. 

(3) For monatomic-impurity centers which are not 
extremely strong mass or strain defects the third-order 
processes are dominant. The computed relaxation time 
differs radically from monotonic behavior for the proc
ess ( k \ ) + ( k ' X ' ) * ± ( s ) and is given by Eq. (93). I ts 
temperature-dependent factor is given at low tem
peratures by 

f(a),T)= (a)s—Q))2 exp\^—h(o)s—a))/kT^} 

with its maximum value proportional to T2 at (cos—aw*) 
= 2kT/h, and at high temperatures by 

f(o),T)= (kT/hcos)o:(o)s—o)) 

with its maximum proportional to T at comax=|cog. The 
temperature-independent factor g(co) has a broad maxi
mum at o) = |cos and is symmetric about this point. The 
functional form of the expression (93) has been tested 
by Walker and Pohl in the preceding paper2 and found 
to be in very good agreement with the experimental 
result. 

To assign a second-order scattering process to the 
effect in the system KCLKNO2 and a third-order 
process to the effect in the monatomic systems KC1: 
NaCl, etc., could have been guessed without introducing 
a specific model, because the indentation in the curves 
of Pohl1 (Fig. 1) for the former lies below the maximum 
in a region where other second-order processes become 
predominant (e.g., the elastic scattering by the strain-
field and the mass-difference of point defects6-14,15). The 
indentation in the curves of Walker and Pohl,2 for the 
latter, on the other hand, lies above the maximum where 
normal and umklapp processes have their greatest 
importance. 

There is no contradiction in our consideration of 
second-order interaction for lattice waves and molecular 

modes and of the third-order interaction between pho
nons and the true localized modes outside the bands. 
But there is some question in taking the form (16) or 
even (29) for the quasilocalized modes within the band, 
and defining a fixed number Gs of them. 

Inside the band all the modes consist of both a 
travelling and a localized part. Usually the latter is 
negligible and one has phonon solutions; but in certain 
regions of the spectrum the localized part is pre
dominant.16 To define a fixed number Gs of localized 
modes, it is necessary to invoke physical plausibility; 
we could take the expression (5a) by Peierls for the 
heat current, with unchanged (ideal) group velocities 
then we would have to reduce the density of phonon 
solutions in the vicinity of cos down to zero for co = cos 

itself. The total number of plane-wave solutions thus 
removed is just the number Gs of localized modes which 
have been put in instead. This definition allows us to 
neglect the travelling part of the Gs quasilocalized solu
tions around cos, and one is left with eigenvectors of the 
general form (16). Specifically, in the case of third-order 
interactions one may well use the single eigenvector 
for the mode with co = cos, which has (practically) no 
travelling part at all; this is justified by the fact that 
the maximum interaction takes place with phonons 
with co~|co s, which is far from the 00 s of quasilocalized 
solutions. 

As to the special choice (29) for the localized eigen
vectors in the band, there is no other justification but 
physical plausibility. Future calculation may reveal a 
different formula for 77,; that would change g(co) some
what, although very slightly. Yet, the more important 
factor fs(oj,T) [~Eq. (83a)] does not depend at all on 
the form of the localized mode. 
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